Medium Term Planning: Summer term Class 5-Y5/6.

Week.	Mathematical aspect	Non-negotiable end points Year 5.	Non-negotiable end points Year 6		culum statements - Year 5.	Curriculum Statements. Year 6.
1.	Number and place value: Roman Numerals solving problems	Knows the Roman numerals up to $\mathrm{M}=$ 1000. Knows the rules of reading Roman numerals including years.	Knows how to use the whole number system, including saying, reading and writing numbers accurately.	- To read in Roman n - To interp and backw through ze - To round 100, 1000, - To solve involve all	to 1000 (M) and recognise years written ive numbers in context, count forwards positive and negative whole numbers ber up to $1,000,000$ to the nearest 10 , ad 100,000. problems and practical problems that ve.	- To read, write, order and compare numbers at least to $10,000,000$ and determine the value of each digit. - To round any whole number to a required degree of accuracy. - To use negative numbers in context and calculate intervals across zero. - To solve number problems and practical problems that involve all of the above.
Links to resources and policy documents:				Each digamam shows a number in umereas, words and Roman		Each diagram shows a number in digits, words and Roman Numerals.
Roman Numeral	Number	Which year is shown by MMVIII?				
I	1					
x	10					
L	50					
D	100			$\text { :vII= } \square \text { 2Nv- } \square \text { :xII- }-\square \text { *xv- } \square$		
$\begin{aligned} & \mathrm{D} \\ & \mathrm{M} \end{aligned}$	500 1000				$\text { 。xu- } \square \text {.xviv }-\square \text { :xvin }-\square$	
2.	Number and place value: Sequences Algebra: formulae	Knows how to describe linear number sequences, including those involving fractions and decimals, and find the term-toterm rule	Knows how to use formulae in mathematics and science.	- To count any given - To read, three deci - To count zero, for ex	or backwards in steps of powers of 10 for to 1,000,000. der and compare numbers with up to cimals and fractions including bridging a number line.	- To generate and describe linear number sequences. - To use simple formulae
Links to resources The following formula is use Celsius $\left({ }^{\circ} \mathrm{C}\right)$ to a temperatur \square Use the formula to con degrees Fahrenheit	nd policy documents: convert a temperature in degrees degrees Fahrenheit (${ }^{\circ} \mathrm{F}$). $.8 \times C+32$ mperature of 20 degrees Celsius to		Hh Father's height 180 cm \qquad boys and a different one for girls: ight in $\mathrm{cm} . y$ is the mother' height of Alfie when he is an adult.	$\begin{aligned} & \text { o) In hesesequala } \\ & \begin{array}{l} \triangle=3 a \\ \hline 4+a=\square \\ \diamond=10 \cdot a \\ \hline a+a=\square \\ \hline \end{array} \end{aligned}$	7. Calculate the value of each shape	Ali has made three sequences of shapes by sticking coloured squares together. The The sequence of blue shapes starts \square \square The sequence of green shapes starts \square \square \square \square and so on. Ali says, 'If I put a red and a blue shape together, they will make a shape that is the Do you agre with Ali? Explain your reasoning. Which of the following statements do you agree with? Explain your decisions, - The value 5 satisfies the symbol sentence $3 \times \square+2=17$ - The value 6 solves the equation $20-x=10$ The value 5 solves the equation $20 \div x=x-1$

Medium Term Planning: Summer term Class 5 - Y5/6.

3.	Multiplication and Division: Properties of number	Know the terms factor, multiple, prime, square and cube numbers.	Know the terms factor, multiple, prime, square and cube numbers.	- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3) [solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	- To identify common factors, common multiples and prime numbers;							
Links to re Find the	nd policy documents: n factors of each p 24 and 20 and 28 and	ir of numbers. 36 30 45		Now we are going to find some lowest common multiples for the following pairs of numbers. The lowest common multiple of 6 and 9 is \square The lowest common multiple of 8 and 6 is The lowest common multiple of 8 and 7 is \square	On a 100 square, shade the first 5 multiples of 7 and then the first 8 multiples of 5 What common multiple of 7 and 5 do you find? Use this number to find other common multiples of 7 and 5 The sum of two prime numb What are the numbers? Multiply the lowest comm the biggest common fact	21 31 41 51 61 71 81 91 rs is			25 35 45 55 65 75 85 95		7 8 17 18 27 28 37 38 47 48 57 58 67 68 7 78 87 88 97 98	9 10 19 20 29 30 39 40 49 50 59 60 69 70 79 80 89 90 99 100 and 9 by
4.	All four operations: mental methods.	Knows efficient methods for adding, subtracting, multiplying and dividing	Knows how to use mental calculations with increasingly large numbers and more complex calculations.	- To add and subtract numbers mentally with increasingly large numbers - To solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. - To multiply and divide numbers mentally drawing upon known facts.	- To perform mental calculations, large numbers. - To solve addition and subtractio deciding which operations to use - To use estimation to check answ the context of a problem, levels of			p				erations and contexts, determine, in
Links to re What is $\mathbf{2}$ What is 5.7 $12980+$ 23,111-47 $149+137$ 1 \square $+$	nd policy documents: 8.304? 13125 50 \square $=10$	you add brackets to make this $(3 \mathrm{x}$	$8) \div(2+4)=4$	Calculate $36 \cdot 2+19.8$ with a formal written column method with a mental method, explaining your reasoning. Calculate $32+8 \times 5$ $16 \div 4+2=$ $12+8 \div 4=$	Compare $31+9 \times 7$ and $(31+9) \times 7$ What's the same? What's different? Choose operations to go in the empty boxes to make these sentences true. $6 \square 3 \square 7=16$ $6 \square 3 \square 7=27$ $6 \square 3 \square 7=9$ Put brackets in these number sentences so that they are tru $12-2 \times 5=50$ $12-8-5=9$ $10 \times 8-3 \times 5=250$ Common factors can be related to finding equivalen Calculate $900 \div(45 \times 4)$.	mber ractio						

Medium Term Planning: Summer term Class 5 - Y5/6.

Medium Term Planning: Summer term Class 5-Y5/6.

Medium Term Planning: Summer term Class 5-Y5/6.

Calculate the size of the ang What's the same? What's dif	fferent?			The angles marked a are all equal. What is the size of a ?	$P Q$ is a straight line. Not drawn accurately. Calculate the size of angle x. Do not use a protractor (angle measurer). This shape is three-quarters of a circle. How many degrees is angle x ?
8.	Measurement; Time and money.	Knows how to use all four operations in problems involving time and money, including conversions.	Knows how to use all four operations in problems involving time and money, including conversions.	- To use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling - To solve problems involving converting between units of time.	- To use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places;
Links to resources an Put these lengths of in order starting with longest time. 105 minutes 1 hour 51 minutes 6360 seconds	d policy documents: time the	s 'Hire this car for 72 hours. $y s$ is this?	days	If a car travelled 560 km in 8 hours, work out how far it travelled in half an hour and in 4 hours: I buy 8 golf balls, 12 tennis balls and 2 footballs. How much change will I get from $£ 50$?	A length of string measures 10 m . Rob cuts off six pieces. Each piece measures 120 cm . How much string is left over? Tara has a $2 l$ bottle of lemonade. She has 7 glasses which can be almost filled with the lemonade. If she uses all the lemonade, give an estimate of the capacity of the glass. A flight from Britain to America takes 8 hours 12 minutes. How many minutes is this altogether? \qquad minutes
9	Measurement: solving problems, including temperature.	Knows how to convert between metric units measurement.	Knows how to connect conversion to a graphical representation as preparation for	- To convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre);	- To solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.

Medium Term Planning: Summer term Class 5 - Y5/6.

Medium Term Planning: Summer term Class 5-Y5/6.

Medium Term Planning: Summer term Class 5-Y5/6.

